Wiring diagram / Switching examples

PEDS16	... 2	$\ldots 2 \mathrm{H}$... 4	...4S	. 4 T
PEDS25	... 2	$\ldots 2 \mathrm{H}$... 4	...4S	...4T
PEDS32	... 2	...2H	... 4	...4S	...4T
Contacts Wiring Diagram	${ }_{-1}^{+1} \frac{a}{a-1}$				${ }^{+1}$
Switching example	${ }^{+1} \text { ת1 } \frac{a^{+1}+1}{\alpha^{-1}}=\sim .$		$\begin{aligned} & { }^{+1} \frac{a^{+1}}{+1}=\square .{ }^{-1}=\sim . \\ & { }^{+2}-\frac{a}{+2}=\square . \end{aligned}$		
PEDS16	...4B	... 6	... 8		
PEDS25	..4B	... 6	... 8		
PEDS32	...4B	... 6	... 8		
Contacts Wiring Diagram					
Switching example					

Enclosed switch-isolator

Cable Cross section

Screw driver, tightening Torque

(7) $1.2-1.8 \mathrm{Nm}(11-16 \mathrm{lb} . \mathrm{inch})$
$\frac{\text { Jumper for series and parallel switching of contacts }}{\text { Type }}$

Choose jumpers based on the mode of connection and availability requirements of your application.

1. Maximum ambient temperature $70^{\circ} \mathrm{C}$.
2. Suitable as photovoltaic disconnect switch in accordance with article 690 of NFPA 70(NEC).
3.Use $75^{\circ} \mathrm{C}$ wires, $8-14$ AWG(not included 8 AWG strand), Torque $1.2-1.8 \mathrm{Nm}$.
4.Suitable for use on a circuit capable of delivering not more than 5 KA amperes, 1000 VDC maximum.

Technical Data

Main Contacts						
Rated thermal current $\mathrm{I}_{\text {the }}$			A	16	25	32
Rated insulation voltageU,			VDC	1500	1500	1500
Distance of contacts (per pole)			mm	8	8	8
Rated operational current I.						
DC-PV0/DC-PV1	2 pole in series	500 V	A	16	25	32
		600 V	A	16	25	32
$L / \mathrm{R}=1 \mathrm{~ms}$	(2/4/6/8)	700 V	A	16	23	27
	$1 / 2 /=$	800 V	A	16	20	23
		900 V	A	13	16	20
		1000 V	A	9	11	13
		1200 V	A	6	8	10
		1500 V	A	3	4	5
	2H	500 V	A	29	45	58
	$[3 / 4 / 2$	600 V	A	29	45	50
		700 V	A	16	23	27
		800 V	A	16	20	23
		900 V	A	13	16	20
		1000 V	A	9	11	13
		1200 V	A	6	8	10
		1500 V	A	3	4	5
	4 poles in series$(4 \mathrm{~T}, ~ 4 \mathrm{~B}, ~ 4 \mathrm{~S})$	500 V	A	16	25	32
		600 V	A	16	25	32
		700 V	A	16	25	32
	$1 / 2 / 3 / 3 /$	800 V	A	16	25	32
		900 V	A	16	25	32
		1000 V	A	16	25	32
		1200 V	A	16	25	32
		1500 V	A	16	20	23
		500 V	A	29	45	58

Projoy Electric Co., Ltd.

